List

# Decision Tree Classification

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv(‘Social_Network_Ads.csv’)
X = dataset.iloc[:, [2, 3]].values
y = dataset.iloc[:, 4].values

# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# Fitting Decision Tree Classification to the Training set
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion = ‘entropy’, random_state = 0)
classifier.fit(X_train, y_train)

# Predicting the Test set results
y_pred = classifier.predict(X_test)

# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)

# Visualising the Training set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_train, y_train
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() – 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() – 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap((‘red’, ‘green’)))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap((‘red’, ‘green’))(i), label = j)
plt.title(‘Decision Tree Classification (Training set)’)
plt.xlabel(‘Age’)
plt.ylabel(‘Estimated Salary’)
plt.legend()
plt.show()

# Visualising the Test set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() – 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() – 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap((‘red’, ‘green’)))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap((‘red’, ‘green’))(i), label = j)
plt.title(‘Decision Tree Classification (Test set)’)
plt.xlabel(‘Age’)
plt.ylabel(‘Estimated Salary’)
plt.legend()
plt.show()

Leave a Reply

Your email address will not be published. Required fields are marked *

  Posts

1 2
April 10th, 2018

Data Preprocessing

The process of converting data from initial or raw state to another format. Importing data Import the data: df = […]

April 22nd, 2018

K means

# K-Means Clustering # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # […]

April 21st, 2018

Random Forest

# Random Forest Classification # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd […]

April 21st, 2018

Decision Tree

# Decision Tree Classification # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd […]

April 21st, 2018

Naive Bayes

# Naive Bayes # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # […]

April 21st, 2018

Kernal SVM

# Kernel SVM # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # […]

April 21st, 2018

SVM

# Support Vector Machine (SVM) # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as […]

April 20th, 2018

Logistic Regression

# Logistic Regression # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # […]

April 19th, 2018

Random Forest Regression

# Random Forest Regression # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd […]

April 19th, 2018

Decision Tree Regression

# Decision Tree Regression # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd […]

April 19th, 2018

SVR

# SVR # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing […]